Quick facts Automation laboratory | Founded in 2011 to provide parent company with reliable Hi-End test equipment | |---| | Located in Moscow | | From Design to Production to Installation to Technical Support and Modernization | | Multifunctional team of hi-qualified developers | | Main modern approaches to development are implemented: SCRUM, FMFA, TRIZ | ### **Test equipment family** #### **Bipolar Static Testers** up to 26kA, up 8500V #### Bipolar Dynamic Testers ATU, CROVU, Qrr tq, TOU #### Surge Current Testers up to 120kA **Power Cycling Testers** #### **Clamping Systems** up to 150kN #### Z_{th} testers **Under development** HTRB Testers #### **IGBT Static Testers** up to 13kA, up 8500V Late stage development ### **IGBT** Dynamic Testers up to 15kA, up 3400V Prototype #### Full SiC MOSFET Testers Static & Dynamic **Under development** Stray Inductance Testers Under development ### Main advantages #### Modular design - ✓ High maintainability - ✓ Flexibility - Easy update and modernization ### All tests in one process - "All tests in one clamping" - ✓ High performance - ✓ Minimization of human factor ### High accuracy - ✓ Automatic calibration - ✓ High accuracy ### Servo controlled pulse generation - ✓ High test condition stability independent from DUT - ✓ Wide measurement range - ✓ Servo controlled signals ## **Bipolar Static Test Equipment** | Characteristic | Designator | Range | | Accuracy | Conditions | |--|-------------------------------------|-------|-------|-----------------------|---| | Peak on-state voltage , V | $V_{TM(FM)}$ | 0.3 | 5 | ±0.5% of reading ±5mV | I _{TM(FM)} = 40025200A;
Signal shape: trapezoidal, sinus, s-curve
Duration up to 10ms | | Repetitive peak off-state voltage, Repetitive peak reverse voltage, V | $V_{DRM},\;V_{RRM}$ | 100 | 8000 | ±1% of reading ±10V | I _{DRM/RRM} = 0.1300mA;
Signal shape: sinus, DC
Duration 8.310ms
Frequency 5 / 50Hz | | | | 0.1 | 10 | ±1% of reading ±10uA | V _{DRM/RRM} = 1008000V; | | Repetitive peak off-state current, Repetitive peak reverse current, mA | I _{DRM} , I _{RRM} | 10 | 100 | ±1% of reading ±0.1mA | Signal shape: sinus, DC
Duration 8.310ms | | | | 100 | 300 | ±1% of reading ±1mA | Frequency 5 / 50Hz | | Gate trigger direct voltage, V | V_{GT} | 0.1 | 4.5 | ±2% of reading ±10mV | V _D = 12V; | | Gate trigger direct current, mA | l _{GT} | 50 | 1000 | ±2% of reading ±1mA | V _D = 12V; | | Holding current, mA | I _H | 30 | 1000 | ±2% of reading ±1mA | I _G = 1A; | | location test voltage. V | V _{ISOL AC (RMS)} | 100 | 10000 | ±1% of reading ±10V | | | Isolation test voltage, V | V _{ISOL DC} | 100 | 12000 | ±1% of reading ±10V | I _{ISOL} =0.15mA; | | Isolation resistance, MOhm | R _{isol} | 5 | 1000 | ±1% of reading±1MOhm | V _{ISOL} = 10002500V; | ## **Bipolar Dynamic Test Equipment** | Characteristic | Designator | Range | | Accuracy | Conditions | |--|---------------------|-------|------------|--|--| | Critical rate of rise of off-state voltage, V/us | dV _D /dt | 50 | 2500 | ±10% | V _{DM} = 3004500V
t = 50200us | | Reverse recovery charge, uQ | Q _{RR} | 1 | 10000 | According to the oscilloscope accuracy and resolution* | I _{TM(FM)} = 100500 (2000)A
dI/dt = 1100A/us
V _R = 100V | | Reverse recovery time, us | t _{RR} | 1 | 100 | According to the oscilloscope accuracy and resolution* | I _{TM(FM)} = 100500 (2000)A
dI/dt = 1100A/us
V _R = 100V | | Reverse recovery current, A | I _{RRM} | 10 | 500 (2000) | ±1.25% ±0.1A | I _{TM(FM)} = 100500 (2000)A
dI/dt = 1100A/us
V _R = 100V | | Turn-off time, us | t _Q | 1 | 2000 | According to the oscilloscope accuracy and resolution* | $I_{TM(FM)}$ = 100500 (2000)A
dI/dt = 1100A/us
V_R = 100V
V_D = 1002000V
dV/dt = 20200V/us | | Peak reverse power, kW | P _{RSM} | 1 | 70 | ±5% ±0.1kW | I _{PRSM} = 0.260 A; | | Avalanche voltage, V | V_{BR} | 100 | 9000 | ±4% ±10V | - | | Gate controlled turn-on time, us | t _{gt} | 0.5 | 30 | ±3% ±100ns | - | | Gate controlled delay time, us | t _d | 0.5 | 30 | ±3% ±100ns | - | ^{*} Scope device specification: ¹⁴ bit (0.006 %) resolution (16 bit enhanced resolution) 500 MS/s sampling 250 MHz bandwidth ³² MSamples memory per channel 0.25 % DC vertical accuracy, 0.1 % typical 25 ppm time base accuracy # **IGBT Static Test Equipment** | Characteristic | Designator | Rar | nge | Accuracy | Conditions | |--|----------------------------|-------------|------------------|---|--| | Gate-to-Emitter Leakage Current, uA | I _{GES} | 1 | 1 000 | ±1% of reading ±1uA | V _{GE} = 15V40V;
V _{CE} =0V | | Gate Threshold Voltage, V | V _{GE(on)} | 4 | 10 | ±1% of reading ±10mV | $I_{C} = 101000 \text{mA};$
$V_{CE} = V_{GE};$ | | | | 0.1 | 1 000 | ±1% of reading ±10uA | V _{GE} = 0V; | | Collector-to-Emitter Leakage Current, uA | I _{CES} | 1 000 | 300 000 | ±1% of reading ±1mA | V _{CE} = 1008500V;
Signal shape: half-sine, DC | | Collector-to-Emitter Breakdown Voltage, V | V _{(BR)CES} | 100 | 8000 | ±1% of reading ±10V | V _{GE} = 0V;
I _C = 100nA300mA;
Signal shape: half-sine, DC | | Collector-to-Emitter Saturation Voltage, V | V _{CE(on)} | 0.2 | 10 | ±1% of reading ±10mV | I _C = 20012600A;
V _{GE} = 1020V;
Signal shape: trapezoidal, sinus, s-curve | | Max Reverse Leakage Current, uA | I _R | 10
1 000 | 1 000
300 000 | ±1% of reading ±10uA
±1% of reading ±1mA | V _{BR} = 1008000V;
Signal shape: half-sine, DC | | Cathode Anode Breakdown Voltage, V | V_{BR} | 100 | 8000 | ±1% of reading ±10V | I _C = 010mA;
Signal shape: half-sine, DC | | Forward Voltage, V | V _F | 0.2 | 10 | ±1% of reading ±10mV | I _C = 2005000A;
Signal shape: trapezoidal, sinus, s-curve | | | V _{ISOL AC (RMS)} | 100 | 10000 | ±1% of reading ±10V | | | Isolation test voltage, V | V _{ISOL DC} | 100 | 12000 | ±1% of reading ±10V | I _{ISOL} =0.15mA; | ## **IGBT Dynamic Test Equipment** | Characteristic | Designator | Ra | Range | | Conditions | |--|-----------------------|-----------|---------------------------|--|-----------------------------| | Collector-emitter voltage after switching off, V | V _{CE} | 20 | 2 800 | | | | Peak collector-emitter voltage, V | V _{CE(peak)} | 20 | 3 400 | | | | Peak collector current, A | I _{CM} | 500 | 2 500 | | | | Turn-off energy, mJ | E _{off} | 1 | 1 000 | | | | Turn-on energy, mJ | E _{on} | 1 | 1 000 | | | | Turn-on delay time, ns | t _{D(on)} | | | | | | Rise time, ns | t _R | | | | V _{CC} = 20V3400V; | | Turn-off delay time, ns | t _{D(off)} | 10 | 40,000 | According to the | | | Fall time, ns | t _F | 10 10 000 | oscilloscope accuracy and | $V_{GEON} = 520V;$
$t_P = 51000us;$ | | | Tail time, ns | t _z | | | resolution*** | ър – Э 1000u3, | | Reverse recovery time, ns | t _{RR} | | | | | | Decay current rate , A/us | di/dt | 10 | 8 000 | | | | Non-repetitive peak collector current, A | I _{CSM} | 500 | 15 000 | | | | Reverse recovery current , A | I _{RR} | 500 | 4 000 | | | | Reverse recovery charge , uC | Q_{RR} | 1 | 3 000 | | | | Reverse recovery energy, mJ | E _{REC} | 1 | 1 000 | | | | Decay recovery current rate , A/us | di _{REC} /dt | 10 | 8 000 |] | | #### Test types: - Single pulse RBSOA - · Double (multiple) pulse RBSOA - · Short Circuit - Avalanche Test - *** Scope device specification: - 14 bit (0.006 %) resolution (16 bit enhanced resolution) - 500 MS/s sampling - 250 MHz bandwidth - 32 MSamples memory per channel - 0.25 % DC vertical accuracy, 0.1 % typical 25 ppm time base accuracy ## **SiC Dynamic Test Equipment** | Characteristic | Designator | R | Range | | Conditions | |--|-----------------------|------|-----------|--|--| | Collector-emitter voltage after switching off, V | V _{CE} | 100 | 1 700 | | | | Peak collector-emitter voltage, V | V _{CE(max)} | 100 | 2 000 | | | | Peak collector current, A | I _{CPK} | 50 | 6 50 | | | | Turn-off energy, mJ | E _{off} | 1 | 1 000 | | | | Turn-on energy, mJ | E _{on} | 1 | 1 000 | | | | Turn-on delay time, ns | t _{D(on)} | | | | $V_{CC} = 20V3400V;$
$V_{GEON} = 520V;$
$t_{P} = 51000us;$ | | Rise time, ns | t _R | | | | | | Turn-off delay time, ns | t _{D(off)} | | 40,000 | According to the oscilloscope accuracy and resolution*** | | | Fall time, ns | t _F |] 20 | 20 10 000 | | | | Tail time, ns | t _Z |] | | | | | Reverse recovery time, ns | t _{RR} | | | | | | Decay current rate , A/us | di/dt | 10 | 8 000 | | | | Non-repetitive peak collector current, A | I _{CSM} | 10 | 650 | | | | Reverse recovery current , A | I _{RR} | 20 | 650 | | | | Reverse recovery charge , uC | Q_{RR} | 0.1 | 3 000 | | | | Reverse recovery energy, mJ | E _{REC} | 1 | 1 000 | | | | Decay recovery current rate , A/us | di _{REC} /dt | 10 | 8 000 | | | ^{***} Scope device specification: 25 ppm time base accuracy ¹⁴ bit (0.006 %) resolution (16 bit enhanced resolution) ⁵⁰⁰ MS/s sampling ²⁵⁰ MHz bandwidth ³² MSamples memory per channel ^{0.25 %} DC vertical accuracy, 0.1 % typical # **Clamping systems** | Characteristic | | | | | | |-----------------|------------------------------|------------------------------|--|---------------------------------|-------------------| | Package type | Module | Stud | Disk | Semiconductor element (bipolar) | Surge Current | | Туре | Manual;
Electromechanical | Manual;
Electromechanical | I Electromechanical I Electromechanical I Electron | | Electromechanical | | Force | 2kN | 2kN | 100kN | 100kN | 150kN | | Heating | 150°C | 150°C | 200°C | 200°C | 200°C | | Maximum current | 6kA | 6kA | 30kA | 30kA | 120kA | | Isolation | 8kV | 8kV | 15kV | 15kV | 15kV | | Form factor | Table housing | Table housing | 19" Rack | 19" Rack | 19" Rack | ## **Surge Current** | Characteristic | Designator | Range | | Accuracy | Conditions | |-----------------------------|-----------------|--------------------|-----------|------------------------|--| | Peak on-state voltage , V | $V_{TM(FM)}$ | 0.3 | 5 | ±1% of reading
±5mV | I _{TM(FM)} = 40015000A;
Signal shape: trapezoidal, sinus, s-curve
Duration up to 10ms | | Surge Current, kA | I _{sc} | 0.5 | 40/80/120 | ±5% of reading | V _{TM(FM)} up to 60V | | Dimensions 40 kA type, mm | HxWxD | 2200 x 800 x 1200 | | | 19" Rack | | Dimensions 80 kA type, mm* | HxWxD | 2200 x 1600 x 1200 | | | 19" Rack x 2 | | Dimensions 120 kA type, mm* | HxWxD | 2200 x 2400 x 1200 | | | 19" Rack x 3 | ## **Power Cycling** Power supply: 1500A Capacity: 5 modules (10 IGBTs) 19" Rack ### **HTRB** Power supply: 3000V, 1A Temperature: up to 200°C Capacity: 10 modules (20 IGBTs) 19" Rack ### Zth Main power supply: 1000A, 10ms-1000s Pulse power supply: 2500A, 100us-10ms Measuring current: 0.5A-5A 0.1% # **Equipment in production** ## Turn-key IT solution ### **Testing process** ## Turn-key IT solution advantages - ✓ Centralized test profiles control - ✓ Automatic equipment adjustment - ✓ Centralized results storage ### **ATSM** ### **ATSM** – Automated Test System for power semiconductor Modules - ✓ Fully automated test process - ✓ All types of tests in one system (RT and Tjmax) - ✓ Automatic DUT labelling (pass / reject) Thank you!